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Model Problem

Consider the following linear elasticity problem:

m QCR m u : displacement field

m O =TUfl m , A are Lamé parameters

[ | FDﬁFN,IA'DﬂIA'N:(Z) [ ] €(VU) = [VU+VUT]/2

—Div(o) =f in Q
o = 2ue(Vu) + Atr(e(Vu))l in Q )
u=20 onlpU fD ( )
o-vV =gy onFNUfN
[ is the inactive boundary and T is the active boundary.
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Support

Load

m The design domain D is the
dashed rectangular region.
The fixed background mesh.

m [ is the active boundary and
is described by a levelset
function.

m | is the inactive boundary
and [ = 09 N o1.

We view (1) as solving for
the displacement of a

cantilever beam.
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Weak Formulation

We define the following linear and bilinear forms:

x(Qv) == (F,v)a + (&N, V), of,
a(Q u,v) :=2u(e(Vu),e(Vv))a+ ANV -u,V -v)q.

And we state the weak formulation of (1):
Let Vp := {v € HY(Q) : v|r_ ¢, = 0} and find u € Vp such that

a(Qu,v) =x(Q;v) Vve Vp(Q). (2)
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i

Let 7\71 be a conforming shape regular mesh of D and we define the
following Lagrange finite element space

By ={vy € CO(D) : vp|7 € Pu(T), VT € Ty}, for some k > 1,

where Py (T) denotes the collection of polynomials of degree k on
T. Additionally, we define a background finite element space with
the built-in boundary conditions on I'p

By =Byn{veH(D): vz, =0}
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Levelset Formulation

m ¢, € By, a Lipschitz levelset m Qp:={x €D :Py(x) <0}
function mlp={xeD:pnx)=0}
€, and 5
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Figure: Interface (black) and shell

region. R
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Subdomains Definitions

° I

-

(a) Q4 in red and the active mesh T4 s (b) We define the shell region ):,j,f(; in
depicted by the collection of elements. red above.

Syv Kk RS
v v v Ans;i\ TavaY: ;A%Lr P
= y

(c) The selection of elements, 7+,  (d) We have the facet selection Fyx+
around the shell region Zié. depicted by the above.

S
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Stabilization Forms

We define the stabilized Nitsche Form:

an(Qp;u,v) = a(Qp;u,v)—(o(u)v,v)r, , — (u,0(v)V)r, ,

h
+7Dh71b(Qh; u,v) +yvh(e(u)v,a(v)v)r,
b(Qh? u, V) = 2#(", V)r,,’D + )\(u A 1/)

Thp>

Xh(Qp; u, v) := x(Qp; v)+ynh(gn, o (v)v)r,
m where yp > 0 and yy > 0 (we choose vy = 0).
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Stabilization Forms

We define the stabilized Nitsche Form:
an(Qp;u,v) == a(Qpu, v)—(o(u)v, v)r, , — (u,o(v)v)r,
+yph™tb(Qp; u, v) + yvh(o(u)v, o (V)V)F, s
b(Qp; u,v) == 2p(u, v)r, , + Mu-v,v-v)r,
Xh(Qp; u, v) := x(Qp; v)+ynh(gn, o (v)v)r,
m where 7p > 0 and yy > 0 (we choose vy = 0).

D

And we define the Facet stabilization form:

shr(u,v) = h_2/ (g — w) - (vi — wr)dx.

wF
m 71 and T neighboring m u;, v; are the canonical
elements extensions of u;|7. and v;|T,
mwrp=T1UT, mF=TNT>
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Unfitted Finite Element Scheme

With this, we define the restricted finite element space on 7s:

Vi = Vih(Qp) ={vp € CO(®h75) SV = 0h|®h,§’ for some vy, € Bh}
We define a new bilinear form including the stabilization forms:

An(Q; u,v) == ap(Q; u, v) + vssp <]—'Z§D; u, v) + vsh?sp, (inN; u, v).

Full Scheme:
Find u, € Vh(Qh) such that

An(Qp; up, vi) = Xn(Qnivh) Vv € V(). (3)

See also [Hansbo, Larson, Larsson| " Cut Finite Element Methods
for Linear Elasticity Problems”, 2017. =
y
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Minimization Problem

We focus on minimizing the compliance. Compliance measures the
internal elastic energy and is defined as

J(Qv) = x(2; v) + a0, ap > 0. (4)
We state our minimization problem:

J(Q2p, min; Qh min)) = [ J(Q2p; . 5
( h, Uh( h, )) VQhGA,S.TIVI; solves (3) ( h Vh) ()

m A is the set of admissible

m 4 is the discrete domain
shapes
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Lagrangian Formulation

In order to free the PDE constraint of our minimization problem
(5), we introduce a Lagrangian

L(Q; vk, qn) _J(Qh,vh) An(Qp; v, gn) + Xa(25 qn),

L(Qp; up, max  L(Qp; vh, qp),
L(S2h; th, Ph) = VL EATVE Vi (D) Ve Vi) L(S2h; Vi, Gn)

which leads to the first order conditions:
6th(§h;Hh7ﬁh)(vh) = 05 5VhL(§h;Hh7ﬁh)(Wh) = 07
which implies that up, and p;, solve the variational problems

An(Qp; tn, vi) = Xn(Qn; vi) Yvi € Vi(Q),
An(Qp; wi, Pr) = 0u, J(Qn; vi)(wp)  VYwy, € Vi(Qp).
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Fréchet Differentiability of Shape Functionals

We also note that we have the shape optimality condition:
(2T p)(Y) =0 VY € [Wh(RY)).

Given some bulk shape functional J(2), we first define the
perturbation of the identity as follows:

®y(x) = I(x) + U(x), Qu =2y (Q),

for some vector field U. And now if there exists an operator, say
J(Q)(U) € L(IWL>*(R9)]9,R), such that
[J(Qu) — J(Q) - S Q)| _

im 0, 6
onm 10T ©)

then J(Q) is Fréchet differentiable with Fréchet derivative
J(Q)(U). -
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Fréchet Shape Derivative Lemmas

We use the following Lemmas from [Delfour, Zolesio] " Shapes and
Geometries” and [Henrot, Pierre] " Shape Variation and
Optimization”.

Lemma (1)

Given f € L1(RY) and U € [WLH(R9)]¢ we have that
Jo[f(®u(a)) — f(a)] (VaU(a))da

Ul 1,00 0 U 1,00

=0

Lemma (2)

Given f € WH(RY) and U € [W1*(R9)]¢ we have that
Jo f(®u(a)) — f(a)da— [, Vf(a) U(a)da
1Ull 1,000 Ul w20 ' ]
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Fréchet Shape Derivative

We have the following theorem due to [Delfour, Zolesio] " Shapes
and Geometries” and [Henrot, Pierre] " Shape Variation and
Optimization” .

Theorem
Let f(x) be defined on ® and independent of the shape Q. Then
for the shape functional J(Q) := [, f(x)dx with f € WH(RY) we
have that J(2) is shape d/fferent/able at Q (in the sense of (6))
with Fréchet derivative

J(Q)(U) = /6 7(a)U(a) - v(a)da

for all U € [W1>°(R9)]¢.

The proof of which follows from the previous lemmas, a classical
determinant expansion, and the divergence theorem.
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Discretize-then-Optimize VS Optimize-then-Discretize

Optimize-then-Discretize: One first derives the optimality
conditions for the continuous problem and then discretizes while
still using the optimality conditions for the continuous problem.

Discretize-then-Optimize: One first discretizes the problem and
then computes the optimality conditions for the discrete problem
exactly.

Our Contributions:

m Shape derivative of bulk functionals can be computed exactly
for discretize unfitted finite element formulations.

m Discrete shape derivative formula agrees with the optimality
conditions for the continuous problem.

m We gain benefits from both methods.
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Shape Derivative on a Cut Element

Let #(x) be defined on ® and independent of the shape Q and
define the shape functional restricted to an element T

Jr(Q) = /QmTf(x)dx.

We show that we can obtain the exact
aQ shape derivative of J7(£2), so long as
\\_/ the following assumption holds:
T Assumption (1)

Assume that 0Q N OT has vanishing
RY-1 Lebesgue measure.
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Shape Derivative on a Cut Element

Theorem

Given the shape functional J7(Q) := [o f(x)dx with
f € WHL(RY) we have that J1(RQ) is shape differentiable at Q (in
the sense of Definition (6)) with Fréchet derivative

JHQ)U) = / f(a)U(a) - v(a)dS(a)

oQnT
for all U € [WLH>°(R9)]9, provided assumption (1) holds.

We sketch part of the proof.
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Sketch of Proof

We prove a generalization of Lemma 2, where we show

lim Jont f(®u(a)) — f(a)da — Jo.r Vf(a) - U(a)da

=0.
U]l y1,00 =0 | U]l w100

To deal with this restriction to 2 N T we use a smooth
approximation, pc(a), of the characteristic function x (a) and
consider

o f(@y(@)e () ~ Fap(a)da [y VIF(a)p(a)] - Ula)da
e—0 HUHWI"X’ '
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Sketch of Proof

| f@u(@)(@u(a) - F@p(a)da - [ ViF(a)p(a)]- U(a)da
Q Q

1
- / / [V [F(®.0(a)pe(Bs0(a))] - VIF(@)p(@)] - Ula)dsda  (MVT)
QJO

le(U):=

1
- /Q/O [V [f(‘i)SU(a))pE("I)sU(a))] - V[f(‘I’Su(a))pe(a)]] . U(a)dsda
+ ...

Louisiana State University Department of Mathematics and Center for Computation and Technology (CCT)




Sketch of Proof

We expand /.(U) as follows:

1
L(U) = /Q /0 [V [F(®s0(a))pc(@50(a))] — VIF(®au(a))p(@)] - U(a)dsda

Ac(U):=

/ / V- [F(®.0(a)) (0 (®20(a)) — p(@)) U(a)] dads +..

Other terms are omitted as they use similar techniques.

Louisiana State University Department of Mathematics and Center for Computation and Technology (CCT)




Sketch of Proof

lim A, —I|m/ /v [F(®.0(a)) (0 (®ou(a)) — pe(a)) U(a)] dads

e—0

— fim / | f@w(@) [(®0(@) ~ pla)) Ula) - vdads

e—0

= [ ] (@@ cr(®eu(@) - x1(a)] U(a) -vias

e'i%nuuwm //BQ |- Ix7(®su(a)) — x7(a)| dads
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Sketch of Proof

We add and subtract a smooth function fx having the property
lim ||f — fi||w11 =0
k—o00

o / /m I(f — £) o (®.0(a))| - [x7(®su(a)) — x7(a)| dads

e—0 Hunloo
+/0 /aQ‘fk((I)sU(a)N x1(®su(a)) — x7(a)| dads
1
< Cl|f = fillwra + Ck/ /89 |x#(a) — x7(a)| dads,
0

where T = ®_(T) and note that Ix#(a) — x7(a)| = X547
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Sketch of Proof

Let ||U||ic = 6. For x € TAT := (T\T)U(T\T) and notice that
we have,

xe(T\T) = x+UKx)eTandx¢ T
x€(T\T) = x+U(x)¢ Tandxe T

— TAT c 0;0T).

Note: The line segment between x 4+ U(x) and x must intersect 0T
and the length of the line is bounded by 4 hence dist(x,0T) < ¢ for
xe TAT.

&,
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Sketch of Proof

So let O5(0T) be the § neighborhood of T, and so we have the

following;:
Ac
I|m7< Cl|f — kaWLl—l—Ck/ lda.
e—0 ||U]|w 9QN0s(9T)

Hence as |U|| 1.« — 0 we have that § — 0 and we get

Ac

m  lim = C||f — fk||W1,1+Ck/ 1da.
Ul 1,000 =0 || U]y 90NaT

And this tends towards 0 as k — oo so long as assumption (1)
holds.
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Connection to Level Set Formulation

We consider the following ODE to update the domain:
x=V(x,t), Vt>0,  x(0)=acR9

Given a level set function ¢(x), we define a perturbation of the
level set function as follows

S(x,t) = d(x) +tn(x) = ed(x) = n(x).
Define Q; := {x € RY : ¢(x,t) < 0} and define a velocity field

vo(x.t n(x).
’2

VD =" 9a, 0P
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Connection to Level Set Formulation

ngNS(x, t)

M T e

n(x).

Notice ¢(x(t),t) = 0 for all t for
every a = x(0) € Ip.

St =g o]+ (Vi ) &0
= n(x(£) + VA(x(1), 1) - V(x(2), t) = 0.
Hence this choice of V evolves the zero level set.
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Connection to Level Set Formulation

Theorem

Assume ¢ € W?>®(R9) such that 1 ~ |Vé| > ¢ > 0 in some
d-neighborhood of T'. Let Q(¢ + 1) be the sub-zero level set of

¢ + 1. For the shape functional J7(Q) = [ f(x)dx with

f € WH(RY) we have that J1(S) is level set shape differentiable
at Q with Fréchet derivative

1HQ)() = /8 @) (<nlVo(a)] ) da

for all n € W2>°(RY).

In particular, given U =

n we have J5(Q)(n) = JH(Q)(U).

\V¢\2
Additionally, given f(x) € By,
! !
Q)(n) = ZA Jr(Q)(n) Vn € Bs.
VTEeT, L
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Discrete Shape Derivatives

We make the following assumptions:
mf = ﬁD U ﬁN is fixed
| | FD = (Z)

We compute the shape derivatives:

AZ(Qh(%)iUhvVh)(nh):/ (2ue(Vup) : (Vi) + AV - tp)(V - v3))

mf=0
m g # 0 on a subset of [y

M [Vl
Xo(Qn(0n); vi) () = 0 J(Q(bn); vi) () = a0 |

r, | Von|
L(@n(n)s 1)) = [ (T 4 A -+ 20)

For all up, vy, € Vi,(Q25) and all admissible 7, € By,
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Algorithm

The exact shape derivative of our discrete functional is

T = [ T Al )

where uj, solves (3).

In order to compute the descent direction, we find d¢, € By such
that

(5¢h°77h)H1(f>) =—T'(¢n)(1n) V1n € Bp.
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Algorithm

isplacement Magnitude

. IiDDe'DDU . . .. .
\ ¢ Given initial shape €2, we define
, the stabilization region.

Then solve for uy, and p;, from

Ah(Q;ﬁh, Vh) = Xh(Q; Vh) Vv, € Vh(Q),
Ah(Q; Wh;ﬁh) = (5vhJ(Q; Vh)(Wh) Ywy € Vh(Q)

Ap is self-adjoint due to our choice of J(£2; v4), hence u, = p,,.
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Algorithm

Then compute the descent direction: Find d¢p, € Bj, such that

(5¢h’77h)H1 =—TJ'(¢n)(nn) Ynm € Bp.
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Algorithm

Then compute the descent direction: Find d¢p, € Bj, such that

(5¢h’77h)H1 =—TJ'(¢n)(nn) Ynm € Bp.

Update ¢, < ¢p + adop where o > 0 is determined through a
backtracking line search.

Note: the stabilization region remains unchanged until after « is
determined.
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Algorithm

Then compute the descent direction: Find d¢p, € Bj, such that

(5¢h’77h)H1 =—TJ'(¢n)(nn) Ynm € Bp.

Update ¢, < ¢p + adop where o > 0 is determined through a
backtracking line search.

Note: the stabilization region remains unchanged until after « is

determined.
'ld DD

~05

lnn 400

Displacement Magnitude

Repeat until stopping criteria is
met.
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Cantilever with 11 holes, gy = (0, —1) on far right

We start with an initial
shape (top) having 11
holes spaced evenly and
we do not update the
levelset function along the
boundary so that it retains
its rectangular shape.

The resulting image
(bottom) is shown.
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Cantilever with 4 holes, gy = (0, —1) on far right

This time we allow the
levelset function to be
updated on a portion of
the boundary, but still
restrict the levelset on the
boundary depicted in black
here:

The initial guess (top) and

resulting shape (bottom@
are displayed. L
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Cantilever with 12 holes, gy = (0, —1) on far right

We again restrict the
update of the levelset on
the boundary depicted in
black here:

I

We produce qualitative
results similar to that of
[Burman, et al] "Shape
Optimization using the
Cut Finite Element
Method", 2018. é@l
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Shape Derivative Test

We test our shape derivative formula using some arbitrary
perturbation with step size ¢ and then compare it with a finite
difference approximation of the shape derivative.

5J(FD) = lim J J,,,ev’ c= |0J(FD) 5J(exact)]'
e—0 € €
eps k J prev J 0J (exact) 0J (FD) |difference| ¢
1| 0.04199774 | 0.04198771 | -1.00312053 | -1.00300318 | 1.173e-04
1.00E-05 | 2 | 0.04192908 | 0.04191913 | -0.99564238 | -0.99552669 | 1.157e-04
3| 0.04192911 | 0.04191916 | -0.99568833 | -0.99557262 | 1.157e-04
1| 0.05471722 | 0.05471599 | -1.23297870 | -1.23296633 | 1.238e-05
1.00E-06 | 2 | 0.05461154 | 0.05461031 | -1.23218803 | -1.23217509 | 1.293e-05
3 | 0.05461150 | 0.05461027 | -1.23212173 | -1.23210872 | 1.301e-05
1| 0.06983341 | 0.06983326 | -1.50440084 | -1.50439885 | 1.995e-06
1.00E-07 | 2 | 0.06977494 | 0.06977479 | -1.49662564 | -1.49662738 | 1.738e-06
31 0.06977483 | 0.06977468 | -1.49666321 | -1.49666503 | 1.820e-06
1| 0.08731274 | 0.08731272 | -1.78759980 | -1.78759962 | 1.775e-07
1.00E-08 | 2 | 0.08720557 | 0.08720555 | -1.78220514 | -1.78220560 | 4.586e-07
3| 0.08720552 | 0.08720550 | -1.78221505 | -1.78221539 | 3.340e-07
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Ellipse Test
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(a) FE Degree = 1 (b) FE Degree = 2 (c) FE Degree = 3
uooy) == (St 4 2y4) L u@) = [ [VulPdA— A (9 - Ad)
) = y ’ - 0)>
4\ ﬁ Q

sJ V)= [ (IVu>—A) V vdS.
o0 &
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Ellipse Test

Error of Cost of Superellipse

maxh | FE Degree =1 | FE Degree = 2 | FE Degree = 3
0.1 | 1.16996184e-03 | 3.60375786e-05 | 1.96245579e-07
0.05 | 7.32926122e-04 | 4.80178400e-06 | 9.54815926e-09
0.025 | 1.70979836e-04 | 2.09071780e-07 | 1.96049010e-10

m NGSolve uses an isoparametric mapping, which does not work
directly with our shape derivative formula for higher order
finite element methods.

m NGSolve can use a subdivision to compute integrals instead of
the isopoarametric mapping.
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Conclusion

Highlights:

m We obtain exact shape
derivative of discrete bulk
functionals in unfitted finite
element methods with a
level set framework.

Special Thanks to
\ \ [

m Easily works within level set
framework.

(~
Extensions: f«

m Boundary functionals
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