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Model Problem

Consider the following linear elasticity problem:

Ω ⊂ Rd

∂Ω := Γ ∪ Γ̂

ΓD ∩ ΓN , Γ̂D ∩ Γ̂N = ∅

u : displacement field

µ, λ are Lamé parameters

ϵ(∇u) := [∇u +∇uT ]/2





−Div(σ) = f in Ω
σ = 2µϵ(∇u) + λtr(ϵ(∇u))I in Ω

u = 0 on ΓD ∪ Γ̂D
σ · ν = gN on ΓN ∪ Γ̂N

(1)

Γ̂ is the inactive boundary and Γ is the active boundary.
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Domain

Ω

ΓD ΓN

ΓN

ΓN

Γ̂D

Γ̂N

Γ̂N

Γ̂N

ν

ν
The design domain D̂ is the
dashed rectangular region.
The fixed background mesh.

Γ is the active boundary and
is described by a levelset
function.

Γ̂ is the inactive boundary
and Γ̂ = ∂D̂ ∩ ∂Ω.

We view (1) as solving for
the displacement of a
cantilever beam.
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Weak Formulation

We define the following linear and bilinear forms:

χ(Ω; v) := (f , v)Ω + (gN , v)ΓN∪Γ̂N ,

a(Ω;u, v) := 2µ(ϵ(∇u), ϵ(∇v))Ω + λ(∇ · u,∇ · v)Ω.

And we state the weak formulation of (1):

Let VD := {v ∈ H1(Ω) : v |ΓD∪Γ̂D = 0} and find u ∈ VD such that

a(Ω;u, v) = χ(Ω; v) ∀v ∈ VD(Ω). (2)
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Discretization

Let T̂h be a conforming shape regular mesh of D̂ and we define the
following Lagrange finite element space

Bh = {vh ∈ C 0(D̂) : vh|T ∈ Pk(T ), ∀T ∈ T̂h}, for some k ≥ 1,

where Pk(T ) denotes the collection of polynomials of degree k on
T . Additionally, we define a background finite element space with
the built-in boundary conditions on Γ̂D

B̊h = Bh ∩ {v ∈ H1(D̂) : v |
Γ̂D

= 0}.
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Levelset Formulation

ϕh ∈ Bh a Lipschitz levelset
function

Ωh := {x ∈ D̂ : ϕh(x) < 0}
Γh := {x ∈ D̂ : ϕh(x) = 0}

Figure: Interface (black) and shell
region.
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Subdomains Definitions

(a) Ωh in red and the active mesh Th,δ

depicted by the collection of elements.
(b) We define the shell region Σ±

h,δ in
red above.

(c) The selection of elements, TΣ± ,
around the shell region Σ±

h,δ.
(d) We have the facet selection FΣ±

depicted by the above.
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Stabilization Forms

We define the stabilized Nitsche Form:

ah(Ωh;u, v) := a(Ωh;u, v)−(σ(u)ν, v)Γh,D − (u,σ(v)ν)Γh,D
+γDh

−1b(Ωh;u, v) + γNh(σ(u)ν,σ(v)ν)Γh,N ,

b(Ωh;u, v) := 2µ(u, v)Γh,D + λ(u · ν, v · ν)Γh,D ,
χh(Ωh;u, v) := χ(Ωh; v)+γNh(gN ,σ(v)ν)Γh,N ,

where γD > 0 and γN ≥ 0 (we choose γN = 0).

And we define the Facet stabilization form:

sh,F (u, v) := h−2

∫

ωF

(u1 − u2) · (v1 − v2)dx .

T1 and T2 neighboring
elements

ωF := T1 ∪ T2

ui , vi are the canonical
extensions of ui |Ti

and vi |Ti

F := T1 ∩ T2
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Unfitted Finite Element Scheme

With this, we define the restricted finite element space on Tδ:

Vh ≡ Vh(Ωh) = {vh ∈ C 0(Dh,δ) : vh = v̂h|Dh,δ
, for some v̂h ∈ B̊h}.

We define a new bilinear form including the stabilization forms:

Ah(Ω;u, v) := ah(Ω;u, v) + γssh

(
FΣ±

δ,D
;u, v

)
+ γsh

2sh

(
FΣ±

δ,N
;u, v

)
.

Full Scheme:
Find uh ∈ Vh(Ωh) such that

Ah(Ωh;uh, vh) = χh(Ωh; vh) ∀vh ∈ Vh(Ωh). (3)

See also [Hansbo, Larson, Larsson] ”Cut Finite Element Methods
for Linear Elasticity Problems”, 2017.

Jeremy T. Shahan Advisor: Shawn W. Walker
Louisiana State University Department of Mathematics and Center for Computation and Technology (CCT)

Shape Optimization with Unfitted Finite Element Methods



Minimization Problem

We focus on minimizing the compliance. Compliance measures the
internal elastic energy and is defined as

J(Ω; v) := χ(Ω; v) + a0|Ω|, a0 > 0. (4)

We state our minimization problem:

J(Ωh,min;uh(Ωh,min)) = min
∀Ωh∈A, s.t. vh solves (3)

J(Ωh; vh). (5)

A is the set of admissible
shapes

Ωh is the discrete domain
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Lagrangian Formulation

In order to free the PDE constraint of our minimization problem
(5), we introduce a Lagrangian

L(Ωh; vh,qh) := J(Ωh; vh)− Ah(Ωh; vh,qh) + χh(Ωh;qh),

L(Ωh;uh,ph) = min
∀Ωh∈A,∀vh∈Vh(Ωh)

max
∀qh∈Vh(Ωh)

L(Ωh; vh,qh),

which leads to the first order conditions:

δqh
L(Ωh;uh,ph)(vh) = 0, δvhL(Ωh;uh,ph)(wh) = 0,

which implies that uh and ph solve the variational problems

Ah(Ωh;uh, vh) = χh(Ωh; vh) ∀vh ∈ Vh(Ωh),

Ah(Ωh;wh,ph) = δvhJ(Ωh; vh)(wh) ∀wh ∈ Vh(Ωh).
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Fréchet Differentiability of Shape Functionals

We also note that we have the shape optimality condition:

L′(Ωh;uh,ph)(Y ) = 0 ∀Y ∈ [W 1,∞(Rd)]d .

Given some bulk shape functional J(Ω), we first define the
perturbation of the identity as follows:

ΦU(x) := I (x) + U(x), ΩU := ΦU(Ω),

for some vector field U . And now if there exists an operator, say
J ′(Ω)(U) ∈ L([W 1,∞(Rd)]d ,R), such that

lim
∥U∥W 1,∞→0

|J(ΩU)− J(Ω)− J ′(Ω)(U)|
∥U∥W 1,∞

= 0, (6)

then J(Ω) is Fréchet differentiable with Fréchet derivative
J ′(Ω)(U).
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Fréchet Shape Derivative Lemmas

We use the following Lemmas from [Delfour, Zolesio] ”Shapes and
Geometries” and [Henrot, Pierre] ”Shape Variation and
Optimization”.

Lemma (1)

Given f ∈ L1(Rd) and U ∈ [W 1,∞(Rd)]d we have that

lim
∥U∥W 1,∞→0

∫
Ω [f (ΦU(a))− f (a)] (∇aU(a))da

∥U∥W 1,∞
= 0

Lemma (2)

Given f ∈W 1,1(Rd) and U ∈ [W 1,∞(Rd)]d we have that

lim
∥U∥W 1,∞→0

∫
Ω f (ΦU(a))− f (a)da −

∫
Ω∇f (a) ·U(a)da

∥U∥W 1,∞
= 0.
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Fréchet Shape Derivative

We have the following theorem due to [Delfour, Zolesio] ”Shapes
and Geometries” and [Henrot, Pierre] ”Shape Variation and
Optimization”.

Theorem

Let f (x) be defined on D̂ and independent of the shape Ω. Then
for the shape functional J(Ω) :=

∫
Ω f (x)dx with f ∈W 1,1(Rd) we

have that J(Ω) is shape differentiable at Ω (in the sense of (6))
with Fréchet derivative

J ′(Ω)(U) =

∫

∂Ω
f (a)U(a) · ν(a)da

for all U ∈ [W 1,∞(Rd)]d .

The proof of which follows from the previous lemmas, a classical
determinant expansion, and the divergence theorem.
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Discretize-then-Optimize VS Optimize-then-Discretize

Optimize-then-Discretize: One first derives the optimality
conditions for the continuous problem and then discretizes while
still using the optimality conditions for the continuous problem.

Discretize-then-Optimize: One first discretizes the problem and
then computes the optimality conditions for the discrete problem
exactly.

Our Contributions:

Shape derivative of bulk functionals can be computed exactly
for discretize unfitted finite element formulations.

Discrete shape derivative formula agrees with the optimality
conditions for the continuous problem.

We gain benefits from both methods.
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Shape Derivative on a Cut Element

Let f (x) be defined on D̂ and independent of the shape Ω and
define the shape functional restricted to an element T

JT (Ω) :=

∫

Ω∩T
f (x)dx .

We show that we can obtain the exact
shape derivative of JT (Ω), so long as
the following assumption holds:

Assumption (1)

Assume that ∂Ω ∩ ∂T has vanishing
Rd−1 Lebesgue measure.
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Shape Derivative on a Cut Element

Theorem

Given the shape functional JT (Ω) :=
∫
Ω∩T f (x)dx with

f ∈W 1,1(Rd) we have that JT (Ω) is shape differentiable at Ω (in
the sense of Definition (6)) with Fréchet derivative

J ′T (Ω)(U) =

∫

∂Ω∩T
f (a)U(a) · ν(a)dS(a)

for all U ∈ [W 1,∞(Rd)]d , provided assumption (1) holds.

We sketch part of the proof.
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Sketch of Proof

We prove a generalization of Lemma 2, where we show

lim
∥U∥W 1,∞→0

∫
Ω∩T f (ΦU(a))− f (a)da −

∫
Ω∩T ∇f (a) ·U(a)da

∥U∥W 1,∞
= 0.

To deal with this restriction to Ω ∩ T we use a smooth
approximation, ρϵ(a), of the characteristic function χT (a) and
consider

lim
ϵ→0

∫
Ω f (ΦU(a))ρϵ(ΦU(a))− f (a)ρϵ(a)da −

∫
Ω∇[f (a)ρϵ(a)] ·U(a)da

∥U∥W 1,∞
.
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Sketch of Proof

∫

Ω
f (ΦU(a))ρϵ(ΦU(a))− f (a)ρϵ(a)da −

∫

Ω
∇[f (a)ρϵ(a)] ·U(a)da

=

∫

Ω

∫ 1

0
[∇ [f (ΦsU(a))ρϵ(ΦsU(a))]−∇[f (a)ρϵ(a)]] ·U(a)dsda (MVT )

=

Iϵ(U):=︷ ︸︸ ︷∫

Ω

∫ 1

0
[∇ [f (ΦsU(a))ρϵ(ΦsU(a))]−∇[f (ΦsU(a))ρϵ(a)]] ·U(a)dsda

+ ...
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Sketch of Proof

We expand Iϵ(U) as follows:

Iϵ(U) =

∫

Ω

∫ 1

0
[∇ [f (ΦsU(a))ρϵ(ΦsU(a))]−∇[f (ΦsU(a))ρϵ(a)]] ·U(a)dsda

=

Aϵ(U):=︷ ︸︸ ︷∫ 1

0

∫

Ω
∇ · [f (ΦsU(a)) (ρϵ(ΦsU(a))− ρϵ(a))U(a)] dads +...

Other terms are omitted as they use similar techniques.
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Sketch of Proof

lim
ϵ→0

Aϵ = lim
ϵ→0

∫ 1

0

∫

Ω
∇ · [f (ΦsU(a)) (ρϵ(ΦsU(a))− ρϵ(a))U(a)] dads

= lim
ϵ→0

∫ 1

0

∫

∂Ω
f (ΦsU(a)) [ρϵ(ΦsU(a))− ρϵ(a)]U(a) · νdads

=

∫ 1

0

∫

∂Ω
f (ΦsU(a)) [χT (ΦsU(a))− χT (a)]U(a) · νdads

lim
ϵ→0

Aϵ

∥U∥W 1,∞
≤

∫ 1

0

∫

∂Ω
|f (ΦsU(a))| · |χT (ΦsU(a))− χT (a)| dads
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Sketch of Proof

We add and subtract a smooth function fk having the property
lim
k→∞

||f − fk ||W 1,1 = 0

lim
ϵ→0

Aϵ

∥U∥W 1,∞
≤

∫ 1

0

∫

∂Ω
|(f − fk) ◦ (ΦsU(a))| · |χT (ΦsU(a))− χT (a)| dads

+

∫ 1

0

∫

∂Ω
|fk(ΦsU(a))| · |χT (ΦsU(a))− χT (a)| dads

≤ C ||f − fk ||W 1,1 + Ck

∫ 1

0

∫

∂Ω

∣∣χT̃ (a)− χT (a)
∣∣ dads,

where T̃ = Φ−1
sU(T ) and note that

∣∣χT̃ (a)− χT (a)
∣∣ = χT̃△T .
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Sketch of Proof

Let ||U ||L∞ = δ. For x ∈ T̃△T := (T̃\T ) ∪ (T\T̃ ) and notice that
we have,

x ∈ (T̃\T ) =⇒ x + U(x) ∈ T and x /∈ T
x ∈ (T\T̃ ) =⇒ x + U(x) /∈ T and x ∈ T

=⇒ T̃△T ⊂ Oδ(∂T ).

Note: The line segment between x + U(x) and x must intersect ∂T
and the length of the line is bounded by δ hence dist(x , ∂T ) ≤ δ for
x ∈ T̃△T .
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Sketch of Proof

So let Oδ(∂T ) be the δ neighborhood of ∂T , and so we have the
following:

lim
ϵ→0

Aϵ

∥U∥W 1,∞
≤ C ||f − fk ||W 1,1 + Ck

∫

∂Ω∩Oδ(∂T )
1da.

Hence as ∥U∥W 1,∞ → 0 we have that δ → 0 and we get

lim
∥U∥W 1,∞→0

lim
ϵ→0

Aϵ

∥U∥W 1,∞
= C ||f − fk ||W 1,1 + Ck

∫

∂Ω∩∂T
1da.

And this tends towards 0 as k →∞ so long as assumption (1)
holds.

Jeremy T. Shahan Advisor: Shawn W. Walker
Louisiana State University Department of Mathematics and Center for Computation and Technology (CCT)

Shape Optimization with Unfitted Finite Element Methods



Connection to Level Set Formulation

We consider the following ODE to update the domain:

ẋ = V (x , t), ∀t > 0, x(0) = a ∈ Rd .

Given a level set function ϕ(x), we define a perturbation of the
level set function as follows

ϕ̃(x , t) = ϕ(x) + tη(x) =⇒ ∂t ϕ̃(x) = η(x).

Define Ωt := {x ∈ Rd : ϕ̃(x , t) < 0} and define a velocity field

V (x , t) = − ∇ϕ̃(x , t)
|∇ϕ̃(x , t)|2

η(x).
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Connection to Level Set Formulation

V (x , t) = − ∇ϕ̃(x , t)
|∇ϕ̃(x , t)|2

η(x).

Notice ϕ̃(x(t), t) = 0 for all t for
every a = x(0) ∈ Γ0.

d

dt
ϕ̃(x(t), t) = ∂t ϕ̃(x , t)

∣∣∣
x=x(t)

+

(
∇ϕ̃(x , t)

∣∣∣
x=x(t)

)
· ẋ(t)

= η(x(t)) +∇ϕ̃(x(t), t) · V (x(t), t) = 0.

Hence this choice of V evolves the zero level set.
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Connection to Level Set Formulation

Theorem

Assume ϕ ∈W 2,∞(Rd) such that 1 ∼ |∇ϕ| ≥ c > 0 in some
δ-neighborhood of Γ. Let Ω(ϕ+ η) be the sub-zero level set of
ϕ+ η. For the shape functional JT (Ω) :=

∫
Ω∩T f (x)dx with

f ∈W 1,1(Rd) we have that JT (Ω) is level set shape differentiable
at Ω with Fréchet derivative

J ′T (Ω)(η) =

∫

∂Ω∩T
f (a)

(
−η|∇ϕ(a)|−1

)
da

for all η ∈W 2,∞(Rd).

In particular, given U = − ∇ϕ̃

|∇ϕ̃|2 η we have J ′T (Ω)(η) = J ′T (Ω)(U).

Additionally, given f (x) ∈ Bh,

J ′(Ω)(η) =
∑

∀T∈T̂h

J ′T (Ω)(η) ∀η ∈ Bh.
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Discrete Shape Derivatives

We make the following assumptions:

Γ̂ = Γ̂D ∪ Γ̂N is fixed

ΓD = ∅
f = 0

g ̸= 0 on a subset of Γ̂N

We compute the shape derivatives:

A′
h(Ωh(ϕh);uh, vh)(ηh) =

∫

Γh

(2µϵ(∇uh) : ϵ(∇vh) + λ(∇ · uh)(∇ · vh))
ηh
|∇ϕh|

χ′
h(Ωh(ϕh); vh)(ηh) = 0 J ′(Ωh(ϕh); vh)(ηh) = a0

∫

Γh

ηh
|∇ϕh|

L′(Ωh(ϕh);uh,uh)(ηh) =

∫

Γh

(2µ|ϵ(∇uh)|2 + λ|∇ · uh|2 + a0)
ηh
|∇ϕh|

For all uh, vh ∈ Vh(Ωh) and all admissible ηh ∈ Bh.
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Algorithm

The exact shape derivative of our discrete functional is

J ′(ϕh)(ηh) =

∫

Γh(ϕh)
(2µ|ϵ(∇uh)|2 + λ|∇ · uh|2 + a0)

ηh
|∇ϕh|

,

where uh solves (3).

In order to compute the descent direction, we find δϕh ∈ Bh such
that

(δϕh, ηh)H1(D̂)
= −J ′(ϕh)(ηh) ∀ηh ∈ Bh.
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Algorithm

Given initial shape Ω, we define
the stabilization region.

Then solve for uh and ph from

Ah(Ω;uh, vh) = χh(Ω; vh) ∀vh ∈ Vh(Ω),

Ah(Ω;wh,ph) = δvhJ(Ω; vh)(wh) ∀wh ∈ Vh(Ω).

Ah is self-adjoint due to our choice of J(Ω; vh), hence uh = ph.
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Algorithm

Then compute the descent direction: Find δϕh ∈ Bh such that

(δϕh, ηh)H1(D̂)
= −J ′(ϕh)(ηh) ∀ηh ∈ Bh.

Update ϕh ← ϕh + αδϕh where α > 0 is determined through a
backtracking line search.

Note: the stabilization region remains unchanged until after α is
determined.

Repeat until stopping criteria is
met.
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Cantilever with 11 holes, gN = (0,−1) on far right

We start with an initial
shape (top) having 11
holes spaced evenly and
we do not update the
levelset function along the
boundary so that it retains
its rectangular shape.

The resulting image
(bottom) is shown.
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Cantilever with 4 holes, gN = (0,−1) on far right

This time we allow the
levelset function to be
updated on a portion of
the boundary, but still
restrict the levelset on the
boundary depicted in black
here:

The initial guess (top) and
resulting shape (bottom)
are displayed.
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Cantilever with 12 holes, gN = (0,−1) on far right

We again restrict the
update of the levelset on
the boundary depicted in
black here:

We produce qualitative
results similar to that of
[Burman, et al] ”Shape
Optimization using the
Cut Finite Element
Method”, 2018.
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Shape Derivative Test

We test our shape derivative formula using some arbitrary
perturbation with step size ϵ and then compare it with a finite
difference approximation of the shape derivative.

δJ(FD) = lim
ϵ→0

J − Jprev
ϵ

, ζ =
|δJ(FD)− δJ(exact)|

ϵ
.

eps k J prev J δJ (exact) δJ (FD) |difference| ζ

1 0.04199774 0.04198771 -1.00312053 -1.00300318 1.173e-04 11.74
1.00E-05 2 0.04192908 0.04191913 -0.99564238 -0.99552669 1.157e-04 11.57

3 0.04192911 0.04191916 -0.99568833 -0.99557262 1.157e-04 11.57

1 0.05471722 0.05471599 -1.23297870 -1.23296633 1.238e-05 12.38
1.00E-06 2 0.05461154 0.05461031 -1.23218803 -1.23217509 1.293e-05 12.93

3 0.05461150 0.05461027 -1.23212173 -1.23210872 1.301e-05 13.01

1 0.06983341 0.06983326 -1.50440084 -1.50439885 1.995e-06 19.95
1.00E-07 2 0.06977494 0.06977479 -1.49662564 -1.49662738 1.738e-06 17.38

3 0.06977483 0.06977468 -1.49666321 -1.49666503 1.820e-06 18.20

1 0.08731274 0.08731272 -1.78759980 -1.78759962 1.775e-07 17.75
1.00E-08 2 0.08720557 0.08720555 -1.78220514 -1.78220560 4.586e-07 45.86

3 0.08720552 0.08720550 -1.78221505 -1.78221539 3.340e-07 33.40
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Ellipse Test

(a) FE Degree = 1 (b) FE Degree = 2 (c) FE Degree = 3

u(x , y) =
1

4

(
1

α
x4 +

1

β
y4

)
, J(Ω) =

∫

Ω
|∇u|2 dA− λ (|Ω| − A0) ,

δJ(Ω;V ) =

∫

∂Ω

(
|∇u|2 − λ

)
V · νdS .

Jeremy T. Shahan Advisor: Shawn W. Walker
Louisiana State University Department of Mathematics and Center for Computation and Technology (CCT)

Shape Optimization with Unfitted Finite Element Methods



Ellipse Test

Error of Cost of Superellipse

maxh FE Degree = 1 FE Degree = 2 FE Degree = 3

0.1 1.16996184e-03 3.60375786e-05 1.96245579e-07

0.05 7.32926122e-04 4.80178400e-06 9.54815926e-09

0.025 1.70979836e-04 2.09071780e-07 1.96049010e-10

NGSolve uses an isoparametric mapping, which does not work
directly with our shape derivative formula for higher order
finite element methods.

NGSolve can use a subdivision to compute integrals instead of
the isopoarametric mapping.
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Conclusion

Highlights:

We obtain exact shape
derivative of discrete bulk
functionals in unfitted finite
element methods with a
level set framework.

Easily works within level set
framework.

Extensions:

Boundary functionals

Special Thanks to
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